



# MULTE G Enal

#### **Enabling Waveform Innovation in 6G**



### **Extensive Academic Research on Waveforms**

• Thousands of global publications on post-OFDM waveforms

- Over 1,500 on OTFS alone!
- Performance and use case advantages theoretically proven and documented for Zak-OTFS
- 6G must not shut the door on continuous innovation
- 3GPP should study new waveforms and define open interfaces to enable future innovation at the physical layer

## cohere

#### Zak-OTFS

- MC-OTFS submitted into 3GPP 5G in 2016
  - Proposal attempted to minimize changes to OFDM (using Symplectic Fourier Transform)
  - This limited the performance advantages
- Zak-OTFS (Zak transform between *delay-Doppler* and *time*) shows significant performance advantages in doubly-spread channels
- Academic study and acceptance of Zak-OTFS is well established



#### Multi-User Zak-OTFS Compatible with 5G Numerology

- Packet Scheduling is done in *t-f* with same PRB and TTI structure compatible with 5G upper layers
- Delay-Doppler parameters selected on a per-packet or user basis to support channel characteristics
- QAM symbols assigned in the *d-D* domain
- Signal Zak-transformed to the time domain and mapped onto the *t-f* grid
- 3GPP Compatibility Seamless alignment with resource allocation numerology





#### Zak-OTFS Benefits Extend Beyond Raw Performance

#### • Performance Advantages

- In doubly spread channels
- Spectrum Utilization More efficient PRB packing
- Architecture Flexibility

  - TDMA-like mode (low PAPR) with less complexity than OFDM
- New Use Cases / Spectrum
  - NTN, FR3, THz
  - AI (compact, predictable channel for training)



#### **Conclusion for 6G**



- 3GPP *MUST* include new waveforms in the 6G study item
  - Anything less would be giving up on physical layer innovations
  - Zak-OTFS should be one of the waveforms studied
- 3GPP *MUST* support a future-compatible open interface between the PHY/MAC and higher layers to enable continuous lower-layer innovation